L18 Locally most powerful tests with one-sided H_a

- 1. Concepts of locally most powerful (LMP) tests
 - (1) Test classes

 $\psi(X)$ is a locally α -level test at $\theta_0 \stackrel{def}{\Longleftrightarrow} \theta_0 \in H_0$ and $\beta_{\psi}(\theta_0) \leq \alpha$. $\phi(X)$ is an α -level test $\iff \phi(X)$ is a locally α -level test at all $\theta_0 \in H_0$.

The collection of all locally α -level tests at θ_0 is $\mathcal{L}_{\theta_0} = \{\psi(X) : \beta_{\psi}(\theta_0) \leq \alpha\}$. Let $\mathcal{T}_{\theta_0} = \{\psi : \beta_{\psi}(\theta_0) \leq \alpha \text{ and } [\beta_{\psi}(\theta)]'_{\theta} \text{ is continuous at } \theta_0\} \subset \mathcal{L}_{\theta_0}$ and consider selecting a good test in \mathcal{T}_{θ_0} .

(2) Locally most powerful test at θ_1 over all tests in \mathcal{T}_{θ_0}

 $\phi(X)$ is a locally most powerful (LMP) test at θ_1 over \mathcal{T}_{θ_0}

 $\begin{array}{l} \stackrel{def}{\longleftrightarrow} \quad (\mathrm{i}) \exists \epsilon > 0 \text{ such that } H_a \cap (\theta_1 - \epsilon, \, \theta_1 + \epsilon) \neq \emptyset \\ (\mathrm{ii}) \ \phi(X) \in \mathcal{T}_{\theta_0} \text{ and } \forall \ \psi(X) \in \mathcal{T}_{\theta_0} \ \beta_{\psi}(\theta) \leq \beta_{\phi}(\theta) \ \forall \ \theta \in H_a \cap (\theta_1 - \epsilon, \, \theta_1 + \epsilon). \end{array}$ So $\phi(X)$ is UMP test over $\mathcal{T}_{\theta_0} \iff \phi(X)$ is LMP over $\mathcal{T}_{\theta_0} \text{ at all } \theta_1 \in H_a.$

Comment: The test class is locally at θ_0 and the power comparison is locally at θ_1 .

2. LMP test with upper-sided H_a

Consider $H_0: \theta = \theta_0$ versus $H_a: \theta > \theta_0$ and $H_0: \theta \le \theta_0$ versus $H_a: \theta > \theta_0$.

(1) Definition

 $\phi(X)$ is LMP test at θ_0 over all tests in \mathcal{T}_{θ_0} if $\phi(X) \in \mathcal{T}_{\theta_0}$ and for all $\psi(X) \in \mathcal{T}_{\theta_0}$ there exists $\epsilon > 0$ such that $\beta_{\psi}(\theta) \leq \beta_{\phi}(\theta)$ for all $\theta \in (\theta_0, \theta_0 + \epsilon)$.

Comment: The test class and the power comparison are both locally at θ_0

(2) Theorem

$$\phi(X) = \begin{cases} 1 & f'_{\theta}(x;\,\theta_0) - kf(x;\,\theta_0) > 0\\ r & f'_{\theta}(x;\,\theta_0) - kf(x;\,\theta_0) = 0\\ 0 & f'_{\theta}(x;\,\theta_0) - kf(x;\,\theta_0) < 0 \end{cases} \text{ with } \int_x \phi(x)f(x;\,\theta_0)\,dx = \alpha. \text{ Then }$$

- (i) Assume $[\beta_{\phi}(\theta)]'_{\theta}$ is continuous. Then $\phi(X) \in \mathcal{T}_{\theta_0}$.
- (ii) If $\psi(X) \in \mathcal{T}_{\theta_0}$, excluding the cases where $\beta_{\psi}(\theta_0) = \beta_{\phi}(\theta_0)$ and $[\beta_{\phi}(\theta_0)]'_{\theta} = [\beta_{\phi}(\theta_0)]'_{\theta}$, then there exists $\epsilon > 0$ such that $\beta_{\psi}(\theta) \leq \beta_{\phi}(\theta)$ for all $\theta \in (\theta_0, \theta_0 + \epsilon)$.

So under the assumptions $\phi(X)$ is LMP test at θ_0 over \mathcal{T}_{θ_0} .

Proof. (i) is clearly true. (ii) For $\psi(X) \in \mathcal{T}_{\theta_0}$, $\int_x \psi(x) f(x; \theta_0) dx \leq \alpha$.

By generalized Neyman-Pearson lemma,

$$[\beta_{\psi}(\theta_0)]'_{\theta} = \int_x \phi(x) f'_{\theta}(x;\theta_0) \, dx \le \int_x \phi(x) f'_{\theta}(x;\theta_0) \, dx = [\beta_{\phi}(\theta_0)]'_{\theta}.$$

By the exclusion, $[\beta_{\psi}(\theta_0)]'_{\theta} < [\beta_{\phi}(\theta_0)]'_{\theta}$.

Let $g(\theta) = \beta_{\phi}(\theta) - \beta_{\psi}(\theta)$. Then $g(\theta_0) \ge 0$ and $g'(\theta_0) > 0$. By the continuity of $g'(\theta)$, there exists $\epsilon > 0$ such that Let $g'(\xi) > 0$ on $\xi \in (\theta_0, \theta_0 + \epsilon)$. Thus on this interval

$$g(\theta) = g(\theta_0) + g'(\xi)(\theta - \theta_0) \ge 0$$
, i.e., $\beta_{\psi}(\theta) \le \beta_{\phi}(\theta)$.

3. LMP test with lower-sided H_a

Consider $H_0: \theta = \theta_0$ versus $H_a: \theta < \theta_0$ and $H_0: \theta \ge \theta_0$ versus $H_a: \theta < \theta_0$.

(1) Definition

 $\phi(X)$ is LMP test at θ_0 over all tests in \mathcal{T}_{θ_0} if $\phi(X) \in \mathcal{T}_{\theta_0}$ and for all $\psi(X) \in \mathcal{T}_{\theta_0}$ there exists $\epsilon > 0$ such that $\beta_{\psi}(\theta) \leq \beta_{\phi}(\theta)$ for all $\theta \in (\theta_0 - \epsilon, \theta_0)$.

Comment: Test class and power comparison are both locally at θ_0 .

(2) Theorem

$$\phi(X) = \begin{cases} 1 & -f'_{\theta}(x;\,\theta_0) - kf(x;\,\theta_0) > 0\\ r & -f'_{\theta}(x;\,\theta_0) - kf(x;\,\theta_0) = 0\\ 0 & -f'_{\theta}(x;\,\theta_0) - kf(x;\,\theta_0) < 0 \end{cases} \text{ with } \int_x \phi(x)f(x;\,\theta_0)\,dx = \alpha. \text{ Then}$$

- (i) Assume $[\beta_{\phi}(\theta)]'_{\theta}$ is continuous. Then $\phi(X) \in \mathcal{T}_{\theta_0}$.
- (ii) If $\psi(X) \in \mathcal{T}_{\theta_0}$, excluding the cases where $\beta_{\psi}(\theta_0) = \beta_{\phi}(\theta_0)$ and $[\beta_{\phi}(\theta_0)]'_{\theta} = [\beta_{\phi}(\theta_0)]'_{\theta}$, then there exists $\epsilon > 0$ such that $\beta_{\psi}(\theta) \leq \beta_{\phi}(\theta)$ for all $\theta \in (\theta_0 - \epsilon, \theta_0)$.

So under the assumptions $\phi(X)$ is LMP test at θ_0 over \mathcal{T}_{θ_0} .

Proof. (i) is clearly true. (ii) For $\psi(X) \in \mathcal{T}_{\theta_0}, \int_x \psi(x) f(x; \theta_0) dx \leq \alpha$.

By generalized Neyman-Pearson lemma,

$$-[\beta_{\psi}(\theta_{0})]_{\theta}' = \int_{x} \phi(x)[-f_{\theta}'(x;\theta_{0})] \, dx \le \int_{x} \phi(x)[-f_{\theta}'(x;\theta_{0})] \, dx = -[\beta_{\phi}(\theta_{0})]_{\theta}'.$$

By the exclusion, $[\beta_{\psi}(\theta_0)]'_{\theta} > [\beta_{\phi}(\theta_0)]'_{\theta}$.

Let $g(\theta) = \beta_{\phi}(\theta) - \beta_{\psi}(\theta)$. Then $g(\theta_0) \ge 0$ and $g'(\theta_0) < 0$. By the continuity of $g'(\theta)$, there exists $\epsilon > 0$ such that Let $g'(\xi) < 0$ on $\xi \in (\theta_0 - \epsilon, \theta_0)$. Thus on this interval

$$g(\theta) = g(\theta_0) + g'(\xi)(\theta - \theta_0) \ge 0$$
, i.e., $\beta_{\psi}(\theta) \le \beta_{\phi}(\theta)$

- **Comment:** If ϕ is UMP test for 2/3, then ϕ is LMP at θ_0 . But constructing UMP monotone likelihood ratio in T(X) is required.
- **Ex:** With $\phi(X)$ in (2) of 3, suppose $\beta_{\psi}(\theta_0) \leq \alpha$. Show that if $[\beta_{\psi}(\theta_0)]'_{\theta} = [\beta_{\phi}(\theta_0)]'_{\theta}$, then $\beta_{\psi}(\theta_0) = \beta_{\phi}(\theta_0)$. Thus by exclusion, $[\beta_{\psi}(\theta_0)]'_{\theta} > [\beta_{\phi}(\theta_0)]'_{\theta}$.

Proof $\beta_{\psi}(\theta_0) \leq \alpha \iff \int_x \psi(x) f(x; \theta_0) dx \leq \alpha$. By Neyman-Pearson lemma

$$\int_x \psi(x) \left[-f'_{\theta}(x;\,\theta_0) \right] dx \le \int_x \phi(x) \left[-f'_{\theta}(x;\,\theta_0) \right] dx$$

S В

$$\begin{array}{ll} \text{So} & 0 = \int_x \left(\phi - \psi\right) [-f'_\theta(x;\,\theta_0) - kf(x;\,\theta_0)] \, dx + \int_x \left(\phi - \psi\right) kf(x;\,\theta_0) \, dx. \\ \text{But} & \int_x \left(\phi - \psi\right) [-f'_\theta(x;\,\theta_0) - kf(x;\,\theta_0)] \, dx \geq 0 \text{ and } \int_x \left(\phi - \psi\right) kf(x;\,\theta_0) \, dx \geq 0. \\ \text{Thus} & \int_x \left(\phi - \psi\right) [-f'_\theta(x;\,\theta_0) - kf(x;\,\theta_0)] \, dx = 0 \text{ and } \int_x \left(\phi - \psi\right) kf(x;\,\theta_0) \, dx = 0. \\ \text{It follows} & \int_x \psi(x) f(x;\,\theta_0) \, dx = \int_x \phi(x) f(x;\,\theta_0) \, dx. \end{array}$$

L19 Simplified LMP with one-sided H_a

1. Simple form of LMP with one-sided H_a

Let $\mathcal{T}_{\theta_0} = \{\psi : \beta_{\psi}(\theta_0) \leq \alpha \text{ and } [\beta_{\psi}(\theta)]'_{\theta} \text{ is continuous at } \theta_0\}$ and $U = \frac{f'_{\theta}(x;\theta_0)}{f(x;\theta_0)}$ where $f(x;\theta)$ is sample joint pdf/pmf.

(1) For H_0 : $\theta = \theta_0$ vs H_a : $\theta > \theta_0$ and H_0 : $\theta \le \theta_0$ vs H_a : $\theta > \theta_0$,

$$\begin{cases} 1 & f_{\theta}'(x;\,\theta_0) - kf(x;\,\theta_0) > 0 \\ r & f_{\theta}'(x;\,\theta_0) - kf(x;\,\theta_0) = 0 \\ 0 & f_{\theta}'(x;\,\theta_0) - kf(x;\,\theta_0) < 0 \end{cases} = \begin{cases} 1 & U > c \\ r & U = c \\ 0 & U < c \end{cases}$$

with $E_{\theta_0}[\phi(U)] = \alpha$, under certain assumptions, is LMP at θ_0 over \mathcal{T}_{θ_0} . (2) For $H_0: \theta = \theta_0$ vs $H_a: \theta < \theta_0$ and $H_0: \theta \ge \theta_0$ vs $H_a: \theta < \theta_0$,

$$\left\{ \begin{array}{ll} 1 & -f'_{\theta}(x;\,\theta_0) - kf(x;\,\theta_0) > 0 \\ r & -f'_{\theta}(x;\,\theta_0) - kf(x;\,\theta_0) = 0 \\ 0 & -f'_{\theta}(x;\,\theta_0) - kf(x;\,\theta_0) < 0 \end{array} \right. = \left\{ \begin{array}{ll} 1 & U < c \\ r & U = c \\ 0 & U > c \end{array} \right. = \phi(U)$$

with $E_{\theta_0}[\phi(U)] = \alpha$, under certain assumptions, is LMP at θ_0 over \mathcal{T}_{θ_0} .

(3) Distribution of U: $U \sim AN\left(0, \frac{I(\theta_0)}{n}\right)$

Proof.
$$U = \frac{f'_{\theta}(X_1,..,X_n;\theta_0)}{f(X_1,..,X_n;\theta_0)} = [\ln f(X_1,..,X_n;\theta_0)]'_{\theta} = [\ln f(X_1;\theta_0)]'_{\theta} + \dots + [\ln f(X_n;\theta_0)]'_{\theta}$$

where $[\ln f(X_1;\theta_0)]'_{\theta}, \dots, [\ln f(X_n;\theta_0)]'_{\theta}$ are iid $[\ln f(X;\theta_0)]'_{\theta} \sim (0, I(\theta_0))$.
By CLT, $\frac{U}{n} \sim AN\left(0, \frac{I(\theta_0)}{n}\right)$. Hence $U \sim AN(0, nI(\theta_0))$.

Ex: Approximate the distribution of U with θ_0 by $N(0, nI(\theta_0))$.

$$\begin{aligned} \text{In (1) } \alpha &= E_{\theta_0}[\phi(U)] \approx P(N(0, nI(\theta_0)) > c) = P\left(Z > \frac{c}{\sqrt{nI(\theta_0)}}\right) \\ \implies c = Z_\alpha \sqrt{nI(\theta_0)}. \\ \text{In (2) } \alpha &= E_{\theta_0}[\phi(U)] \approx P(N(0, nI(\theta_0)) < c) = P\left(Z < \frac{c}{\sqrt{nI(\theta_0)}}\right) \\ \implies c = -Z_\alpha \sqrt{nI(\theta_0)}. \\ \text{Thus} \\ \hline H_0 : \theta \leq \theta_0 \text{ vs } H_a : \theta > \theta_0 \\ \text{Test statistic: } U &= [\ln f(X_1, ..., X_n; \theta_0)]_{\theta}' \\ \text{Reject } H_0 \text{ if } U > Z_\alpha \sqrt{nI(\theta_0)} \end{aligned}$$

is an approximate LMP test at θ over all tests in $\mathcal{T}_{\theta_0}. \\ \hline H_0 : \theta \geq \theta_0 \text{ vs } H_a : \theta < \theta_0 \\ \text{Test statistic: } U &= [\ln f(X_1, ..., X_n; \theta_0)]_{\theta}' \\ \text{Reject } H_0 \text{ if } U < -Z_\alpha \sqrt{nI(\theta_0)} \end{aligned}$

is an approximate LMP test at θ over all tests in \mathcal{T}_{θ_0} .

2. Concept of LMP test with two-sided H_a

Consider tests on H_0 : $\theta = \theta_0$ versus H_a : $\theta \neq \theta_0$.

(1) Test class

 $\mathcal{T} = \{ \psi : \beta_{\psi}(\theta_0) \le \alpha \text{ and there exists } \delta > 0 \text{ such that } \beta_{\psi}(\theta_0) \le \beta_{\psi}(\theta) \text{ for all } \theta \in (\theta_0 - \delta_0) \cup (\theta_0, \theta_0 + \delta) \}$

is the collection of all locally α -level unbiased tests at θ_0 . $\mathcal{T} \cap \left\{ \phi : \left[\beta_{\psi}(\theta) \right]_{\theta^2}^{\prime\prime} \text{ is continuous at } \theta_0 \right\} \subset \mathcal{T}_2$ where

 $\mathcal{T}_2 = \left\{ \psi : \beta_{\psi}(\theta_0) \le 0, \ [\beta_{\psi}(\theta_0)]_{\theta}' = 0 \text{ and } [\beta_{\psi}(\theta)]_{\theta^2}' \text{ is continuous at } \theta_0 \right\}$

Comment: Test class \mathcal{T}_2 contains α -level unbiased tests locally at θ_0 with continuous second derivative of $\beta_{\psi}(\theta)$ at θ_0 .

- (2) Locally most powerful (LMP) test at θ_0 over all tests in \mathcal{T}_2 $\phi(X)$ is LMP test at θ_0 over \mathcal{T}_2 if $\phi(X) \in \mathcal{T}_2$ and for all $\psi(X) \in \mathcal{T}_2$ there exists $\epsilon > 0$ such that $\beta_{\psi}(\theta) \leq \beta_{\phi}(\theta)$ for all $\theta \in (\theta_0 - \epsilon, \theta_0) \cup (\theta_0, \theta_0 + \epsilon)$. **Comment:** Power comparison for tests in \mathcal{T}_2 is locally at θ_0 .
- 3. LMP α -level unbiased test
 - (1) Theorem

 $H_0: \theta = \theta_0$ versus $H_a: \theta \neq \theta_0$. Let

$$\phi(X) = \begin{cases} 1 & f_{\theta^2}''(X;\,\theta_0) - k_1 f(X;\,\theta_0) - k_2 f_{\theta}'(X;\,\theta_0) > 0\\ r & f_{\theta^2}''(X;\,\theta_0) - k_1 f(X;\,\theta_0) - k_2 f_{\theta}'(X;\,\theta_0) = 0\\ 0 & f_{\theta^2}''(X;\,\theta_0) - k_1 f(X;\,\theta_0) - k_2 f_{\theta}'(X;\,\theta_0) < 0 \end{cases}$$

with $\int_x \phi(x) f(x; \theta_0) dx = \alpha$ and $\int_x \phi(x) f'_{\theta}(x; \theta_0) dx = 0$. Then

- (i) Assume that $[\beta_{\phi}(\theta)]_{\theta^2}'$ is continuous at θ_0 . Then $\phi(X) \in \mathcal{T}_2$.
- (ii) If $\psi(X) \in \mathcal{T}_2$ excluding the case where $\beta_{\psi}(\theta_0) = \beta_{\phi}(\theta_0)$, $[\beta_{\psi}(\theta_0)]'_{\theta} = [\beta_{\phi}(\theta_0)]'_{\theta}$ and $[\beta_{\psi}(\theta_0)]''_{\theta^2} = [\beta_{\phi}(\theta_0)]''_{\theta^2}$, then there exists $\epsilon > 0$ such that $\beta_{\psi}(\theta) \leq \beta_{\phi}(\theta)$ for all $\theta \in (\theta_0 \epsilon, \theta_0) \cup (\theta_0, \theta_0 + \epsilon)$.

So under the assumptions $\phi(X)$ is LMP test at θ_0 over \mathcal{T}_2

(2) Proof

(i) is trivial.

(ii) For $\psi(X) \in \mathcal{T}_2$, $\int_x \psi(x) f(x; \theta_0) dx \le \alpha$ and $\int_x \psi(x) f'_{\theta}(x; \theta_0) dx = 0$.

By generalized Neyman-Pearson lemma $[\beta_{\psi}(\theta_0)]_{\theta^2}'' \leq [\beta_{\phi}(\theta_0)]_{\theta^2}''$. By the exclusion $[\beta_{\psi}(\theta_0)]_{\theta^2}' < [\beta_{\phi}(\theta_0)]_{\theta^2}''$. Let $g(\theta) = \beta_{\phi}(\theta) - \beta_{\psi}(\beta)$. Then $g(\theta_0) \geq 0$, $g'(\theta_0) = 0$ and $g''(\theta_0) > 0$. By the continuity, there exists $\epsilon > 0$ such that $g''(\xi) > 0$ on $(\theta_0 - \epsilon, \theta_0) \cup (\theta_0, \theta_0 + \epsilon)$. On this interval

$$g(\theta) = g(\theta_0) + (\theta - \theta_0)g'(\theta_0) + \frac{1}{2!}(\theta - \theta_0)^2 g''(\xi) \ge 0$$

Hence $\beta_{\psi}(\theta) \leq \beta_{\phi}(\theta)$ for all $\theta \in (\theta_0 - \epsilon, \theta_0) \cup (\theta_0, \theta_0 + \epsilon)$.